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LIQUID CRYSTALS, 1996, VOL. 21, No. 3, 437447 

Molecular modelling of liquid crystal systems: An internal 
coordinate Monte Carlo approach 

by MARK R. WILSON 
Department of Chemistry, University of Durham, South Road, Durham 

DH1 3LE, UK 

(Received 9 August 1995; in Jinal form 27 March 1996; accepted 12 April 1996) 

A Monte Carlo scheme is presented which is designed to provide a convenient mechanism to 
model accurately the internal molecular structure of liquid crystalline molecules. The technique 
stores atomic positions in terms of bond lengths, bond angles and dihedral angles within a 
Z-matrix, and the Monte Carlo scheme involves generating trial configurations from changes 
to the Z-matrix using the MM2 molecular mechanics potential to describe energy changes 
between different molecular conformations. The technique is applied to the liquid crystal 
molecule 4-n-pentyl-4’-cyanobiphenyl (5CB), and results are presented for the conformational 
populations and dihedral angle distributions of 5CB in the gas phase at 300K. The effect of 
a nematic mean field on the distribution of molecular conformations is also examined via the 
addition of a conformation-dependent potential of mean torque to the internal energy. 

1. Introduction 
The past 10 years have seen the introduction of a 

range of powerful computational techniques designed to 
model the structure and properties of simple organic 
molecules [ 1,2]. One of the simplest of these techniques 
is the molecular mechanics approach [2-51, which 
attempts to describe molecules by a series of potential 
functions designed to model each structural feature of a 
molecule. Usually separate functions exist to describe 
the distortion of each bond length, bond angle and 
dihedral angle within a molecule together with each 
non-bonded interaction between non-adjacent atoms. 
These functions make up the molecular mechanics force 
jield. Each molecular conformation i has a steric energy 
Ei within the force field which measures how the con- 
formation differs from a hypothetical structure where all 
structural features have their ideal (or natural) values. 
Ei  has no direct physical significance by itself, but the 
differences between steric energies of any two conforma- 
tions is equivalent to the difference in internal energy 
between them. The structure of any molecule can there- 
fore be optimised by minimizing the value of Ei. This 
approach is very powerful and a number of molecular 
mechanics packages exist which are able to carry out 
fast, efficient minimizations of Ei for a series of trial 
geometries to provide energy minimized conformations 
[6,7]. If required these geometries may be further 
refined by the use of semi-empirical quantum methods 
[S]. For small liquid crystal molecules this approach is 
quite valuable. Molecular mechanics can provide an 
indication of the lowest energy molecular conformation, 

and the output coordinates from such a calculation can 
be used to determine molecular dipoles, polarizabilities, 
etc. [9]. However, for larger flexible molecules a high 
number of local minima exist on the energy hypersurface, 
and this leads to two clear problems with the molecular 
mechanics approach. Firstly, the large number of avail- 
able energy minima mean that it is difficult to find the 
global energy minimum for the system. Secondly, even 
if a global minimum can be found it is likely that a 
significant number of molecules will be found in other 
low lying energy states. If all low-lying energy minima 
can be found, a Boltzmann weighting can be used to 
assign fractional populations to each conformation in 
the calculation of molecular properties. However, this 
approach is fraught with difficulties, not least because 
it is always hard to guarantee that all important 
conformations have been found. 

An alternative approach to conformational searching 
is provided by classical molecular dynamics (MD) and 
Monte Carlo (MC) methods [lo]. Both techniques 
provide mechanisms to sample conformational space 
using the same potentials as those derived for molecular 
mechanics work, providing respectively time-average 
(MD) and ensemble-average (MC) information about 
molecular properties. In MD work, Newton’s equations 
of motion are solved using finite difference techniques 
to integrate the equation of motion, whilst in the Monte 
Carlo method individual conformations are generated 
according to a Boltzmann distribution. The MD 
approach is most closely related to the molecular 
mechanics method. MM potential functions can be 
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438 M. R. Wilson. 

differentiated to provide the forces acting on individual 
atomic sites. However, the M D  approach fares rather 
badly for isolated molecules. Single molecule MD simu- 
lations in the temperature range 250-450K are ham- 
pered by the large energy barriers between different 
conformations, and in practice it is difficult to sample 
phase space efficiently. Even when newer stochastic M D  
techniques [ 111 (specifically aimed to combat this prob- 
lem) are used, the convergence of average molecular 
properties is still very slow [12]. Monte Carlo tech- 
niques fare equally badly if random changes are made 
to atomic coordinates in Cartesian space. However, the 
advantage of the MC method is that the sampling of 
phase space can be carried out through changes to 
internal coordinates (bond lengths, bond angles and 
dihedral angles). 

The purpose of the current paper is to outline a simple 
Monte Carlo technique for the simulation of isolated 
liquid crystal molecules. The technique used stores a 
generalized set of atomic coordinates in the form of a 
Z-matrix. Trial Monte Carlo moves are made via 
changes to the Z-matrix coordinates, with the acceptance 
or rejection of trial moves based on a Boltzmann factor 
generated from a standard molecular mechanics poten- 
tial (MM2). Section 2 of this paper describes the Monte 
Carlo technique used to model internal molecular struc- 
ture. In $3  results are presented for the mesogen 4-n- 
pentyl-4-cyanobiphenyl(5CB) in the gas phase at 300 K. 
In $04 and 5 the effect of a nematic field on molecular 
structure is considered by the introduction of a potential 
of mean torque which is loosely coupled to the molecular 
conformation via the inertia tensor. Finally, in $6  some 
conclusions are drawn regarding the usefulness of this 
approach to molecular modelling. 

2. Monte Carlo simulations 
The Monte Carlo technique used in this work is 

centred around the use of a Z-matrix to store an internal 
coordinate representation of a liquid crystal molecule. 
Z-matrices are. well-known in quantum mechanics 
[ l ,  131 where they are used to represent molecular 
structures in terms of bond lengths, bond angles and 
dihedral angles. In this work we place the further restric- 
tion that the dihedral angles used in the Z-matrix are 
proper dihedrals rather than improper dihedrals which 
are normally equally valid as input to quantum calcula- 
tions. The Z-matrix contains a single line for each atom 
and is described by the following framework which is 
defined with respect to figure 1 

Line 1: defines the name of the atom (atom A) to be 

Line 2: defines the position of the second atom 
placed at the origin. 

'I 

A 

dYD 
Figure 1. The definition of terms in the Z-matrix. 

(atom B) in terms of a bond length 1, from 
atom A along the x-axis. 

Line 3: defines the position of the third atom (atom C) 
in terms of a bond length 1, from atom B and 
a bond angle 8, (with atoms A and B) in the 
x-y plane. 

Line 4: defines the position of atom D in terms of the 
bond length I ,  from atom C, the bond angle 
e4 with atoms B and C,  and the dihedral angle 
Q, involving atoms A, B, C and D. 

Line n: defines the positions of a new atom in terms 
of a bond length l,, bond angle 0, and dihedral 
angle 4, with respect to three previously 
defined atoms. 

The Cartesian coordinates of atom D on line n are 
generated from the following matrix equation, 

where T is defined in terms of the Z-matrix angles On,  
4 n 9  

* I  (2) 

cos 6, sin 8, 
T(O,,, 9 , )  = sin 0, cos #,, - cos 8, cos Q, sin 4, i sin 0, sin 4,, - cos 0, sin 4, cos 4, 

and the matrix A is defined in terms of the Euler angles 
8, Q and $ which rotate the Cartesian axes onto the 
dummy axis system defined in terms of atoms A, B, C in 
figure 1 with atom C at the origin, 
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Molecular modelling of liquid crystals 439 

cos4 cos t,b - sin4 cos Osin t,b 
-cos$ sin Ic/ - sin $ cos Bcos t,b 

sin 4 sin 0 

In the Monte Carlo calculations random changes were 
made to the Z-matrix coordinates r using the procedure 
described below. The energy U ( T , )  of each conformation 
m was calculated using a modified form of the MM2 
molecular mechanics force-field. The changes to the 
original MM2 force-field [ 71 involved replacing bond 
dipoles by equivalent partial electronic charges inter- 
acting via a distance-dependent dielectric, and replacing 
the out-of-plane bending equation of MM2 with an 
improper torsional interaction (both standard proced- 
ures in the AMBER force-field [ 14-16]). In the original 
work of Allinger, conjugated 7c-systems were treated by 
a separate program MMP2 [ 17,181 which carried out 
a quantum mechanical VESCF calculation to obtain the 
relevant force-constants. However, it has now been 
established that conjugated n-systems can be successfully 
modelled using the usual MM2 potential functions [ 191. 
In the current work a new atom type was introduced to 
model the aromatic carbons in the phenyl rings of X B ,  
using force-constants generated to reproduce known 
structures of conjugated systems [6]. For 5CB, the 
minimum energy inter-ring torsional angle is predicted 
as 37-6" which is a compromise between minimum steric 
repulsions between ring hydrogens (when the phenyl 
rings are at 90" to each other), and the maximum degree 
of conjugation provided by coplanar rings. In setting up 
the initial Z-matrix for 5CB, molecular mechanics calcu- 
lations were carried out to find the global minimum 
energy conformation. In the case of 5CB this corresponds 
to an all-trans alkyl chain. The minimum energy struc- 
ture was optimised to a high tolerance (< A) and 
where minor anomalies arose between bond lengths and 
angles which should be equal by symmetry, these were 
averaged by hand to produce the Z-matrix given in 
table 1. For example, the bond lengths of the three 
terminal hydrogens were found to vary by a small 
amount (w4 x and so were set equal to the 
average of the three values. The minimum energy 

sin 4 cos $ + cos 4 cos 0 sin 
-sin$sinIc/ + c o s ~ c o s O c o s ~  sinOcos$ 1 . sin 0 sin t,b 

(3) 
- cos 4 sin 0 cos B 

conformation of 5CB is shown in figure 2 along with the 
numbering scheme used in the Z-matrix of table 1. 

At each Monte Carlo step a trial geometry was 
generated by choosing a bond angle Bi and a dihedral 
angle $ j  at random and making a random change to 
both in the range - Omax < Bi < Omax, < 4 j  < dmX. 
The energy difference between the new and old con- 
formations, AU = U(T',.,,) - U(&), was then used to 
accept or reject moves by the usual Metropolis method 
[lo]. In this work, bond lengths were kept fixed for 
convenience, although changes to bond lengths can 
easily be incorporated into this Monte Carlo scheme. 
For ring systems it is not possible to carry out single 
torsional angle rotations without severely disrupting the 
structure of the ring. Although such moves would norm- 
ally be rejected because they generate extremely high 
energy conformations, it is convenient to remove such 
moves from the simulations altogether. In this work a 
rigid sub-structure for 5CB was defined by freezing the 
motion of certain ring dihedrals and bond angles. The 
constrained angles are indicated by superscript a in 
table 1. For rings which change structure via the concer- 
ted rotation about more than one dihedral angle (as in 
cyclohexane or tetrahydrofuran) special multi-angle 
Monte Carlo moves would be required in addition to 
single changes in the Z-matrix proposed here [20]. 
Strictly, when elements of the molecular structure are 
constrained, equilibrium should be generated with a 
probability proportional to exp(-(U/k,T) - 1/21n /HI), 
where IHI is the determinant of a metric tensor which 
arises from setting the conjugate momenta of the con- 
straints to zero [21]. For the bond length constraints 
used in this model, IHI is a function of all the angles in 
the system. However, since the angles always stay close 
to their equilibrium values, the influence of !HI is 
expected to be very small, changing the conformational 
equilibrium by < 1% [21], and so has been ignored in 
these simulations. The constrained bond angles and 

H8 H7 

H34 H3 1 

Figure 2. The minimum energy conformation for 5CB in the MM2 force-field 
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440 M. R. Wilson. 

Table 1. Z-matrix for 5CB. 

Atom 
Bond length Bond angle Dihedral angle 

Line no. A B C D 1" o n  4 n  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

c11 
c11  
c11  
c11  
C04 
C03 
c02  
C03 
C03 
C03 
C04 
c11  
C16 
c15  
C16 
C15 
C14 
c 2  1 
C24 
C04 
c11  
co 1 
c02  
C14 
C15 
c11  
C04 
C15 
C15 
C14 
c14  
c 2  1 
c 2  1 
C24 
C24 
C27 
C27 
C27 

C04 
C04 
C04 
C03 
c02  
co 1 
c02  
c02  
C04 
c11  
C16 
C15 
C14 
C15 
C14 
c 2  1 
C24 
C27 
C03 
C04 
C06 
co1  
C13 
C14 
C16 
c11 
C14 
C14 
c 2  1 
C2 1 
C24 
C24 
C27 
C27 
C30 
C30 
C30 

C03 
C03 
c02  
co1  
C06 
co 1 
co1  
c 1 1  
C16 
C15 
C14 
C13 
C14 
c21 
C24 
C27 
C30 
c 0 2  
C03 
C05 
C06 
c 1 2  
C13 
C15 
C16 
c21  
c21  
C24 
C24 
C27 
C27 
C30 
C30 
c33  
C33 
c33  

c 0 2  
co1  
C06 
C05 
C37 
N38 
C16 
C15 
C14 
C13 
c12  
c 2 1  
C24 
C27 
C30 
c33  
H07 
H08 
H09 
H10 
H17 
H18 
H19 
H20 
H22 
H23 
H25 
H26 
H28 
H29 
H3 1 
H32 
H34 
H35 
H36 

1-5041 
1-3946 
1.3946 
1-3946 
1.3946 
1.3946 
1.3154 
2.4795 
1.3946 
1.3946 
1.3946 
1.3946 
1.3946 
1.5108 
1.5363 
1.5373 
1.5370 
1.5345 
1.1038 
1.1024 
1.1024 
1.1038 
1.1024 
1.1028 
1,1028 
1,1024 
1.1153 
1,1153 
1,1162 
1.1 162 
1.1160 
1.1160 
1,1164 
1,1164 
1.1144 
1.1 144 
1.1144 

120~000 
120~000" 
120~000" 
120~000" 
1 20~000" 
120~000" 
120~000" 
120000 
120~000" 
1 20~000" 
120~000" 
120~000" 
120,715 
110.872 
1 1 1.91 3 
11 1.962 
111.818 
119.405 
120.590 
118.41 1 
120.372 
1 18.424 
119.916 
119.418 
120.603 
109.728 
109.708 
109.366 
109.364 
109-370 
109.369 
109.585 
109.586 
11 1.149 
111.149 
111.149 

180.0" 
0.0" 
0.0" 
0.0" 

180.0" 
180.0" 

180.0" 
0.0" 
0.0" 
0.0" 

180.0" 

180.0 
180.0 
180.0 
180.0" 

0.0" 
180.0" 
180.0" 
180.0" 
180.0" 
180.0" 

0.0" 
31-9 

148.4 

58.7 
- 58.7 

58.7 
- 58.8 

58-8 
180.0 

60.1 

- 376 

- 89.9 

- 58.7 

- 60.1 

"indicates a constrained angle. 

torsions in table 1, would not normally be expected to 
change much in an unconstrained simulation and their 
influence on (HI is negligible. 

Calculations were carried out on an HP 9000 715/75 
workstation, at a rate of 140 trial moves per second. 
Typically, most thermodynamic properties were con- 
verged within 1 x lo6 trial moves, though dihedral angle 
distributions required ~ 2 0  x lo6 to produce a smooth 
distribution across the entire angle range. Production 
runs were carried out for between 40-140 x lo6 trial 
moves. The maximum angle displacements Omax, 
were adjusted independently during the simulation so 

that the acceptance ratio for trial moves was in the 
region of 45-60%. For most dihedrals 50" < dy < 90" 
at 300 K, with 7" < Omax < 10". 

3. Gas phase results 
In the model of 5CB used in this study, 6 dihedral 

angles are free to rotate. The distribution functions S(4) 
for each of these angles is shown in figure 3. In figure 3 (a) 
the inter-ring torsion exhibits four-fold maxima in S(4) 
as expected, with figure 3 (b) showing that the alkyl chain 
prefers to lie perpendicular to the plane of the terminal 
phenyl ring. S ( 4 )  in figure 3 (. f)  corresponds to the rota- 
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1 I I 

0 180 360 

Figure 3. The dihedral angle distributions in the gas 
phase of 5CB at 300K: (a) C5-C4-Cll-C16, 

(d )  C21-C24-C27-C30, (e) C24-C27-C3O-C33, 
(s) C27-C3O-C33-H34. 

(b) c 15-c14-c21 -c24, (c )  c14-c21-c24-c27, 

tion of the terminal methyl group about the C30-C33 
bond. The almost perfect threefold symmetry here 
testifies to the quality of phase-space sampling pro- 
vided by the Monte Carlo method. The surprise from 
figure3 is provided by the unexpected ordering of 
gaucheltrans populations for the three chain 
dihedrals C14-C21-C24-C27, C21-C24-C27-C30 and 
C24-C27-C3O-C33. Integration and normalization of 
these curves (figure 3 (c-e)) provides the relative popula- 
tions for gauche-minus, trans and gauche-plus con- 
formers in table 2. The results indicate that gauche 
conformers are most likely for the dihedral angle 
C14-C21-C24-C27 nearest to the biphenyl core, and 
least likely for the middle dihedral C21-C24-C27-C30. 
Explanation of this can be found through the examina- 
tion of individual energy minimized structures for gauche 
conformers of these dihedral angles. For the dihedral 
angle C14-C21-C24-C27 gauche conformers result in a 
molecular structure which is considerably bent and 

Table 2. Gauche-trans populations for chain dihedral angles 
of 5CB in the gas phase at 300K. 

Dihedral angle g- t g+ 

c 14-c21-c24-c27 19.13 62.44 18.43 
c 2  l-C24-C27-C30 10.37 79.55 10.08 
c24-c27-c3o-c33 13.02 73.62 13.36 

which is stabilised by attractive van der Waals inter- 
actions between chain atoms and atoms in the ring 
structure of 5CB. For long enough carbon chains it may 
even be possible to overcome the energy gap between 
gauche and trans conformers via this mechanism. In 
contrast, gauche conformers for the dihedral angle 
C21-C24-C27-C30 point the end of the chain away 
from the biphenyl rings and so favourable chain-ring 
interactions are minimal. 

S(q5) can be written in terms of an effective torsional 
potential or conformational free energy Eeff(q5), [ 223, 

where C is a normalization factor. Extraction of Eefl(q5) 
from equation (4) yields the effective torsional potential 
curves of figure4. From figure4 the relative energies 
between trans and gauche conformations AE,, are 
2.8 kJ mol-' for C14-C21-C24-C27 (at 61", 299"), 
5.2 kJ mol-' for C21-C24-C27-C30 (at 66", 295"), 
4.4 kJ mol-' for C24-C27-C3O-C33 (at 67", 295"), indic- 
ating that chain-ring interactions stabilize the gauche 
conformation of dihedral C14-C21-C24-C27 to the 
extent of ~ 2 . 4  kJ mol-'. One might intuitively expect 
that it would be easier to rotate about bonds the nearer 
one got to the end of the chain. Some evidence for this 
is provided in figure4 from the observation that the 
energy barrier AE;Frier to rotation between trans and 
gauche conformations drops as one goes down the alkyl 

0 360 

Figure 4. Effective torsional potentials in the gas phase 
of 5CB at 300K: (a) C14-C21-C24-C27, 
(b) C21-C24-C27-C30, (c) c24-c27-c3o-c33. 
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442 M. R. Wilson. 

chain; A E : y  = 16.1, 15.1, 15-OkJm01-~, respectively 
for rotations about C21LC24, C24-C27 and C27-C30 
bonds. It has not proved possible to calculate the 
gauche-gauche energy barrier A E P  accurately 
because so few molecular configurations are generated 
in this region of phase space. It is interesting to compare 
these results with the rotational isomeric state model 
(RIS) of Flory 1231, which is often used to predict the 
structures of liquid crystal molecules. In the simplest 
form of the RIS model, a single energy term is used to 
describe the change in internal energy caused by any 
gauche conformation regardless of its position in the 
alkyl chain. The results of this work suggest that this 
assumption is dubious. 

From the simulations it is possible to extract the 
relative populations of individual conformation of 5CB 
in the gas phase. In table 3,  chain conformational popu- 
lations have the preferred order, ttt > gtt > ttg > tgt. 
Although the all-trans chain is favoured, the relative 
effect of the chain-core van der Waals interactions 
discussed above is to favour gauche conformers which 
lead to an overall bent molecular shape. This is the 
opposite of what one would expect for liquid crystal 
molecules in a condensed phase. In the nematic phase, 

the anisotropic nature of molecular interactions mean 
that molecules exist in an ellipsoidal cavity within the 
fluid, so one would normally expect more elongated 
conformers ( tgt)  to be favoured. To examine the validity 
of this assumption, 4 4 investigates the effect of coupling 
the molecular structure to a nematic mean field via a 
conformationally dependent potential of mean torque. 

4. The effect of a nematic mean field 
Following Emsley, Luckhurst and Stockley (ELS), the 

energy of a molecule in a nematic mean field can be 
written as [24], 

( 5 )  
where Uint(T) is the conformational internal energy, and 
U,,,(T, (I)) is the potential of mean torque for a molecule 
in orientation o and conformation described by the 
internal coordinates r. In the work of ELS, Uint is 
described by the (RIS) model, and is considered to be 
independent of molecular orientation. This means that 
energy barriers to rotation are uninfluenced by the 
orientation of the molccule. In the current work Uint is 
simply equated to the energy of a molecule in the MM2 
force-field (as in $2). 

Table 3. Conformational populations for 5CB in the gas phase at 300 K 

Dihedral Dihedral Dihedral 
c w c 2 1  -C24-c27 C21-C24-C27-C30 C24-C27-C30-C33 YO 

0-27 
2.0 1 
0.02 
2.73 

11-45 
2.03 
0.00 
0.44 
0.08 
1.25 
6.13 
0-13 
6.70 

33.72 
7.02 
0.13 
6.20 
1.25 
0.07 
0.45 
0.00 
1.81 

11.51 
2.50 
0.02 
I .79 
0.29 
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Molecular modelling of liquid crystals 443 

Expanding Uext(r ,  o) in modified spherical harmonics 
CL,rn C251 yields, 

u e x t ( T , P Y )  = - 2 ( - ) m ~ t , m C L , - m ( D ~ Y ) ,  ( 6 )  
L,m 

where E ~ , ~  is an interaction tensor written in irreducible 
form, P,y are spherical polar angles of the director in 
the molecular coordinate system and the prime denotes 
that only even terms in the expansion have been kept. 
Truncating the expansion at L = 2 and working in the 
principal axis system of the interaction tensor, allows 
U,,,(T,fly) to be written as [ 2 5 ] ,  

(7) 

where the E ~ , ~  and E ~ , ~  can be related to the Cartesian 
components of the interaction tensor by, 

In the work of ELS [ 24,251, an explicit expression for 
eL,,,(T) is derived in terms of two variables X ,  and X,  
which, respectively, represent the interaction of the whole 
core and chain C-C bonds with the nematic mean field. 
X,  and X,  and the trans-gauche energy terms in the RIS 
representation can then be optimised to provide good 
fits with data derived from NMR experiments. The 
current work is mainly concerned with providing a 
generalized scheme for predicting the structures of meso- 
genic molecules, and so a slightly simpler form for 
U,,,(T, by)  has been taken below. This form can immedi- 
ately be used to provide first predictions of the structures 
of mesogens without the prior need for detailed NMR 
data. The current scheme could easily be modified along 
the lines of the ELS model, though such a modification 
would require lengthy simulations to provide the correct 
values of X ,  and X,  for a given molecule at a given 
temperature. 

Equation (7) requires that molecular shape should be 
coupled in some way to the potential of mean torque. 
A convenient way of doing this is by linking U,,, to the 
moment of inertia tensor. The latter is defined by 

(9) 
4 P = x, y, z; 

where mi is the mass of atom i and the atomic positions 
ri are measured relative to the centre of mass. 

Diagonalization of I(T) yields three eigenvalues corres- 
ponding to the principal moments of inertia la,, Ibb and 
I,, together with three eigenvectors a, b and c giving the 
principal molecular axes. The values can then be used 
to construct an equivalent inertia spheroid for a molec- 
ule. This spheroid is defined to have uniform mass 
density and have the same moments of inertia and the 
same total mass M as the molecule under investigation, 
and has semi-axis lengths given by a, b, c where a(T)  = 

(2.5(Zb, + I,, - Iaa)/A4)1’2 (with cyclic permutations for 
b(T)  and c(T)). The inertia spheroid can be used in 
equation (7) by equating the values of a, b, c to the 
Cartesian components of the interaction tensor. In doing 
this, it is assumed that the principal axis system of the 
interaction tensor coincides with that of the inertia 
tensor. As a first approximation the biaxial term in the 
equation for U,,, has been ignored. Accordingly, U,,, is 
written as. 

where t(T) = a ( r )  - (b(T)  + c(r ) ) /2  and v is a measure 
of the strength of the potential of mean torque. In the 
simplest form of the Maier-Saupe mean field theory 
[ 261, u is proportional to the average value of the order 
parameter (P2(c0s P)). Here, (P2(c0s P)) is determined 
from the calculations at fixed u and temperature T. The 
neglect of molecular biaxiality in formulating Uext simpli- 
fies the Monte Carlo simulations, but represents a rather 
coarse approximation. Although biaxial contributions 
to the total energy tend to be small, their influence can 
be significant. In the current scheme a biaxial term 
(proportional to c(T) - b(T)) could be added to Uext. 
However, this would require an additional unknown 
constant to be fixed by comparison with the experi- 
mental biaxial order parameter. In this work, the simpler 
form for Uext, in equation ( 7 ) ,  greatly reduces the 
amount of computation required. 

For convenience the director is fixed during the simu- 
lations along the z-axis of space and molecules are 
allowed to rotate under the constraints of U,,,. At each 
step diagonalization of I(T) yields p, a(T) ,  b(T), c (T)  
and consequently We,,. The following matrix equation 
was used to specify the atomic coordinates, 

where the vector (xD, yD, zD) was generated from 
equation (1) and 
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In equation (12), q,, q,, q2 and q3 are the quarternions, 

1 1 
q, = cos -8cos -($ + $) 

2 2  

1 1 
q1 = sin;Ocos ;(4 -I//) 

1 1  
q,=cos-Osin-($ +$) 

2 2  

which specify the orientation of the first bond in the 
Z-matrix in terms of its Euler angles O,$,I,!I relative to 
the Cartesian axes x, y ,  z [lo]. 

Monte Carlo trial moves consisted of a combined 
conformational/rotational move, with the conforma- 
tional change handled in the manner described in §2, 
and the rotational part of the move handled using the 
method described by Vesely [27]. The change in energy 
at each step is computed from equations ( 5 )  and (7). 
After adjusting the sizes of Omar,4max (as in §2), the 
maximum size of rotational moves was adjusted to give 
an overall acceptance rate of between 40-S0%. 

5. Mean field results 
Monte Carlo simulations were carried out for 9 

values of the mean field strength u in the range 
0-2.0kJ mol-l kl.  The results from these simulations 
are summarized in table 4. The potential of mean torque 
in equation (7) is found to have a significant influence 
on the overall shape of SCB. This is witnessed in the 
changing values of the length, width and breadth 
(2a,  2b, 2c) of the equivalent moment of inertia spheroid 
in table 4. These results are of course expected from the 

form used for U,,, in this model, but it is worth noting 
that they are similar to the results found by Wilson 
and Allen in their simulations of 128 molecules 
of 4-( rrans-4-n-pentylcyclohexyl)cyclohexylcarbonitrile 
(CCHS) in the bulk nematic phase [22,28]. 

In a nematic phase, the effective torsional free energy 
of equation (4) can be written as 1291, 

Eeff($) = Enem(4) + E(4)torsion, (14) 

where En,, is the contribution to Eeff($) from the nematic 
field and E($),o,,,,, is the rotational potential in the gas 
phase. In figure 5,  En,, is plotted for different mean field 
strengths u for the three chain torsional angles. The 
nematic field has a dramatic influence on the first 
dihedral angle in the chain (C14-C21-C24-C27), and 
rotational trial moves away from $ = 180" become 
increasingly high in energy as the field strength is turned 
up. En,, is well fit by a quartic polynomial, though 
statistics are rather poor at the gauche-gauche energy 
barrier. The form of Enem in figure S is similar to that 
seen by Cross and Fung in their simulations of 5CB in 
the bulk nematic phase, though the magnitude of En,, 
is slightly higher in their work for similar core order 
parameters. The influence of En,, on the two other 
dihedrals in the chain (C21-C24-C27-C30 and 
C24-C27-C30-C33) is rather smaller than that seen for 
C14-C21 -C24-C27. This reflects the fact that changes 
in these two dihedrals influence molecular shape much 
less than changes to C14-C21-C24-C27. At high mean 
fields, the overall effect of En,, is to reduce the trans- 
gauche energy gap for rotations about C24-C27 and to 
increase it very slightly for rotations about C27-C30. 
The result of these changes to Eeff is reflected in table S 
which lists the relative populations of different chain 
conformers as a function of 1'. The all-trans conformation 

Table 4. Simulation data for 5CB under the application of a potential of mean torque U e x t ( r , f i y )  at 300K. 

(Pz >core 
c / k J m o l - ' k '  ( U  )/kJ mol- ' (U,,,)/kJmol-' < P 2 )  (C1-Cd <a>iA (b)!A < c y A  

0.00 
0.50 
0.75 
0.875 
1.00 
1.25 
1-50 
1-75 
2.00 

99.44 
98-04 
96.54 
95-56 
94-54 
92.54 
90-35 
88.18 
86.10 

0.00 
- 1.29 
-2.83 
- 3.75 
- 4.73 
-677 
- 8.84 
- 10'93 
- 13.01 

0.00 
0.34 
0.49 
0.56 
0-6 1 
0.70 
0.76 
0.80 
0.83 

0.00 
0.32 
0.46 
0-53 
0.58 
0.66 
0.72 
076 
0.79 

9.42 
9.47 
9.49 
9.51 
9.53 
9.57 
9.60 
9.64 
9.66 

2.32 
2.30 
2.27 
2.26 
2.25 
2.23 
2.2 1 
2.19 
2.17 

1.470 
1.460 
1.453 
1.450 
1,443 
1.437 
1.425 
1,410 
1.405 
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2- (c> 

I I 
c '1 
.L 1 I 

0 360 

Figure 5. Nematic contributions (Enm) to the effective tor- 
sional potentials for 5CB under the application of a 
potential of mean torque U(T,fly). Drawn line u =  
0.75kJmol-'A-'; dotted line u =  1.25kJmol-'A-'; 
dashed line u = 1.75 kJmol-' A-'. (a) C14-C21-C24-C27, 
(b) C21-C24-C27-C30, (c) c24-c27-c3o-c33. 

Table 5. Conformational populations for chain dihedral 
angles under the application of a potential of mean torque 
U e , K  BY) at 300 K. 

U 
kJmol-'A-' ttt/% gttl% tgt/% ttgl% 

0.00 
0.50 
0.75 
0.875 
1.00 
1.25 
1.50 
1.75 
2-00 

32.72 f 014 23.0 f 0 3  
36.7 f 0.4 20.9 +_ 0.7 
38.2 f 2.7 19.2 +_ 0.8 
39.0 f 20 18.4 0.9 
401 f 05  17.6 f 0.8 
42.3 f 1.6 15.3 f 0.8 
43.4 f 1.3 14.5 _+ 0.6 
46.1 & 1.0 12.5 0.6 
47.6 f 0.9 11.7 f 0.4 

12.3 f 0 2  
13.7 f 0.6 
14.4 & 0-4 
14.5 f 0.6 
14.9 f 0.6 
15-3 f 0.6 
16.5 f 0.7 
17.6 f 0.5 
17.5 +_ 0.9 

13.7 2 0.2 
13.1 f 0.4 
13.3 +_ 0.4 
13.7 f 0.6 
14.0 f 0.6 
14.0 f 0.8 
13.8 f 0.4 
13.2 f 0.6 
13.8 0.6 

is significantly enhanced by the application of the mean 
field with the all-trans population reaching a value of 
47.6% at v = 2.0 kJ mol-' k' which corresponds to a 
core order parameter of 0.79. The preference for gtt as 
the favoured gauche chain conformation (stabilized by 
ring-chain interactions in the gas phase) is removed, as 
mean field strength is increased. As v increases the 
preferred chain gauche conformation becomes the tgt 
conformation which is the most linear of the gauche 
conformations and therefore makes the largest contribu- 
tion to 5. As in bulk simulations of 5CB [29, 301 and 
CCHS [22], the overall effect of the nematic field is to 
favour those conformations where bonds lie along the 

molecular long-axis. So the preferred order of chain 
conformations is ttt > tgt > ttg > gtt at high values of u, 
and is significantly different from the gas phase results 
of $3. It is worth noting however, that it is only when v 
reaches a value of 1.25 kJmol-'A-' that the tgt con- 
former becomes favoured over gtt. This order for chain 
conformers also occurs in simulations of the liquid phase 
of CCHS [22], and therefore suggests that the simple 
form of the potential of mean torque used in equation (7) 
does not fully take into account the changes in structure 
between the fluid and gas phases. This is not altogether 
surprising. Anisotropic molecules exist in an ellipsoidal 
cavity even in the liquid phase, and an additional term 
could be added to equation (7) to take this into account. 
Samulski and Dong [ 3 11 have suggested a model where 
a molecule is enclosed inside a hypothetical (penetrable) 
cylinder with the cylinder axis coincident with the vector 
a of $4, and each atom interacting with the nearest point 
on the cylinder via a Lennard-Jones potential. Whilst 
this potential could be added directly to equation (7), it 
would again prove difficult to calibrate a general form 
of the potential which would be suitable for use with 
any liquid crystal molecule. 

Finally, it is interesting to compare the predictions of 
this model with experimental evidence of molecular 
shape provided by NMR investigations. Deuterium 
NMR studies have been carried out for 5CB by Emsley 
et aZ. [32], and values of the quadrupolar couplings 4" 
are available for the alkyl chain at 300 K. Assuming that 
the quadrupolar tensor for a deuteron is cylindrically 
symmetric about the C-D bond, then the quadrupolar 
coupling for position k in the chain can be written as, 

Qk = qCDSCDk (15) 
where qcD is the component of the quadrupolar tensor 
along the C-D bond and SCDk is the order parameter 
for the bond. SCDk is calculated directly in the simulations 

(16) 
where PcD is the unit vector along the C-D bond. In 
table 6 there are included values of SCDk calculated from 
the simulations for different positions in the alkyl chain 
as a function of u. NMR values of SCDk are also included 
in table 6,  using the assumption that qcD is independent 
of position in the alkyl chain. The trend in the values 
of SCDk is correctly predicted by the simulations, in 
particular the drop in ISCDkl in going from k = 4 to k = 
5, which is not seen if U,,, is taken to be independent 
of conformational state [32]. Using the data of Emsley 
et al. for an axis fixed in the ring adjacent to the cyano 
group, ( P 2 >  (at 300K) can be estimated to be 0.545. 
This is most closely matched by the simulations at v = 
0.875 kJmol-'A-' ((P2)=0.53) v =  l.OkJmol-'A-' 

as, 

sCDk = <p2(c0s (n * iCD))> 
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Table 6. Order parameters for C-H(D) bonds in the aromatic core and the alkyl chain of 5CB for different mean field strengths 
at 300 K. 'Core' indicates the mean of bond order parameters in the aromatic core. 'Chain 1' indicates the chain bond nearest 
the aromatic core. NMR order parameters are derived (from data in reference [32]) by using values of I68 and 185 kHz for 
the quadrupolar coupling constant for the alkyl chain and aromatic ring deuterons, respectively. 

tJkJmol-'A-' Core Chain 1 

0.5 
0.75 
0.875 
1 a0  
1.25 
1.50 
1.75 
2.00 
N M R  

- 0.047 
- 0.067 
- 0.078 
- 0.084 
- 0.096 
-0.104 
-0.110 
-0.114 
- 0'044 

-0.136 
-0.195 
-0.223 
- 0.243 
-0.276 
-0.301 
-0.318 
-0.329 
-0.202 

Chain 2 

- 0.068 
-0.107 
-0.125 
-0.147 
-0.163 
-0.196 
-0211 
- 0.23 1 
-0.137 

Chain 3 

- 0.07 1 
-0.107 
-0.127 
-0148 
-0168 
-0.198 
-0-212 
- 0234 
-0.147 

Chain 4 

- 0.046 
- 0065 
- 0.083 
- 0.094 
-0.109 
-0.131 
-0.149 
-0.161 
- 0.099 

Chain 5 

- 0.03 1 
- 0.047 
- 0.057 
- 0.068 
- 0.077 
- 0.90 1 
-0.104 
-0.1 13 
- 0.072 

( < P 2 )  = 0.58). The predicted order parameters from 
these simulations are quite close to the experimental 
values, though the theoretical results rather over-predict 
the values of I S,,J for the C-D bond closest to the core, 
and the C-D bonds in the aromatic core itself. This may 
be a function of the simplified form taken for U,,, in 
equation (7), where the influence of molecular biaxiality 
on core and chain has been neglected, or may simply 
reflect the neglect of short-range intermolecular forces 
in the model (as discussed above). The latter would be 
expected to increase the ordering of the chain (through 
quenching out of the gauche conformers gtt, ttg). A more 
ordered chain would lead to the matching of experi- 
mental and theoretical order parameters (for the ring 
adjacent to the cyano group) at a lower value of u. This 
in turn would lead to lower predicted values of ScD for 
C-D bonds in the core, and for the first carbon in the 
chain, together with higher values of S,, for C--D bonds 
further down chain. 

6. Conclusions 
The Monte Carlo method introduced here provides 

excellent statistics for dihedral distribution functions and 
conformational averages for the expenditure of modest 
amounts of computer time. In comparison, trial stoch- 
astic dynamics simulations for 5CB using the same force- 
field and the van Gunsteren/Berendsen method [ 111 
provided very poor statistics at  300 K for even long runs 
in excess of 1011s. Work by Guarnieri and Still on a 5 
site united atom model of pentane at 300 K has recently 
indicated that average dihedral angle distributions had 
not fully converged even after runs in excess of l p s  
[I 121. Such run lengths are currently out of the question 
for large liquid crystal molecules. 

The gas phase structures of 5CB show that the alkyl 
chain prefers an all-trans configuration but that the gtt 
conformer is chosen in preference to ttg and tgt. The 
overall conformer order of ttt > grt > ttg > tgr occurs 
because favourable chain/core interactions are maxim- 

ized when the alkyl chain is allowed to curl up  on itself. 
However, the application of a conformationally depend- 
ent potential of mean torque U,,, causes elongated 
conformers to become favoured, and changes the pre- 
ferred conformer order to ttt > tgt > ttg > gtt. The influ- 
ence of the nematic field is something which is largely 
(and incorrectly) ignored in most molecular mechanics 
(MM) studies of mesogens. The approach adopted here 
provides a general and simple mechanism to improve 
upon mesogenic structures predicted from traditional 
MM studies. 

Comparison of data from this study with experimental 
deuterium NMR work suggests that the number of gtt 
(and to a lesser extent ttg) conformers predicted for 5CB 
may still be too large. This may be due to an over- 
preference for the gtt conformer caused by the MM2 
force-field, or simply from the use of an over-simplified 
form for U,,,. It should also be stressed that the use of 
a mean field for U,,, is unlikely to take fully into account 
the effects of intermolecular interactions with neigh- 
bouring molecules in the fluid. 5CB molecules exist in 
an elliptical cavity formed from surrounding molecules 
in both the liquid and the nematic phase, and this cavity 
is difficult to model accurately within a one molecule 
model. 

Several adaptations of the current work are possible. 
The integration over angles o, considered in $4, can be 
carried out directly for each configuration r. This has 
been considered in recent work by Ferrarini, Luckhurst 
and Nordio [33], and provides a possible alternative to 
the Monte Carlo approach advocated in the current 
study. The addition of the biaxiality term in equation (7) 
and/or further terms in the expansion of equation ( 6 )  
are also possible, and provides a useful means of provid- 
ing a more detailed form for U,,,. Alternatively, the 
Emsley, Luckhurst, Stockley model [24] may be used 
to provide a more sophisticated form for Ucxtt and has 
been shown to give good agreement with deuterium 
NMR for 5CB and 8CB [24,34]. However, in the case 
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of the ELS model, it is difficult to adapt this form for 
U,,, to  molecules without a well-defined core structure. 
Ferrarini et al. [35] have recently suggested that U,,, 
may be written in the form, 

Uext = u P2 cos $,dS (17) 

where $,,s is the angle between the director and a vector 
normal to the molecular surface ns, and the integral is 
taken over all points on the surface S. Using van der 
Waals spheres to define the molecular surface allows 
U,, to be defined for any geometry, with u acting as a 
measure of the strength of the orientational interaction 
(as in this work). This form for Uext is computationally 
expensive compared to the model used here, but may 
provide a better measure of the U,,, than equation (7). 
Finally, the first bulk computer simulations of nematics 
are starting to appear in the literature [22,28-301. 
Currently such studies are very expensive, but may in 
the future provide detailed forms for U,,,. 
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